Unitary Error Basis

ianmcloughlin.github.io linkedin github

A set of \(n^2\) orthonormal \(n \times n\) matrices with respect to the inner product \(\langle A, B \rangle = \text{Tr}(A^\dagger B)/n\) where \(\text{Tr}(M)\) is the trace of the matrix \(M\) and \(M^\dagger\) is its conjugate transpose.

Example: Pauli Matrices

\(\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ \end{bmatrix}, \\; \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ \end{bmatrix}, \\ \begin{bmatrix} 1 & 0 \\ 0 & -1 \\ \end{bmatrix}, \\ \begin{bmatrix} 0 & -i \\ i & 0 \\ \end{bmatrix}\right\}\)

Conjugate Transpose

\(A^\dagger = A^\text{H} = A^\dagger = \bar{A}^\textsf{T}\)

\(\begin{bmatrix} i & 2+i \\ 1 & 3-2i \\ \end{bmatrix}^\dagger = \begin{bmatrix} -i & 1 \\ 2-i & 3+2i \\ \end{bmatrix}\)

Trace

\(A = [a_{ij}]\)

\(\text{Tr}(A) = \sum_i a_{ii}\)

\(\text{Tr}(A \otimes B) = \text{Tr}(A) \text{Tr}(B)\)

\(\text{Tr}(A + B) = \text{Tr}(A) + \text{Tr}(B)\)

\(\text{Tr}(cA) = c\text{Tr}(A)\)

\(\text{Tr}(A) = \sum_i \lambda_i\)

\(\text{Tr}(A) = c\text{Tr}(A)\)

Inner Product

\(A, B\): \(n \times n\) matrices.

\(\langle A, B \rangle = \text{Tr}(A^\dagger B) / n\)

Orthogonality

\(A = \begin{bmatrix} 0 & -i \\ i & 0 \\ \end{bmatrix}\qquad B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \\ \end{bmatrix}\)

\(A^\dagger = \begin{bmatrix} 0 & -i \\ i & 0 \\ \end{bmatrix}\)

\(A^\dagger B = \begin{bmatrix} 0 & -i \\ i & 0 \\ \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 0 & -1 \\ \end{bmatrix}=\begin{bmatrix} 0 & i \\ i & 0 \\ \end{bmatrix}\)

\(\textsf{tr}(A^\dagger B) = 0 + 0 = 0\)

\(d = 2\)

\(\textsf{tr}(A^\dagger B)/2 = 0/2 = 0\)

Normality

\(A = \begin{bmatrix} 0 & -i \\ i & 0 \\ \end{bmatrix} \qquad A^\dagger = \begin{bmatrix} 0 & -i \\ i & 0 \\ \end{bmatrix}\)

\(A^\dagger A = \begin{bmatrix} 0 & -i \\ i & 0 \\ \end{bmatrix}\begin{bmatrix} 0 & -i \\ i & 0 \\ \end{bmatrix}=\begin{bmatrix} -i^2 & 0 \\ 0 & -i^2 \\ \end{bmatrix}\)

\(\textsf{tr}(A^\dagger A) = -i^2 + -i^2 = 2\)

\(d = 2\)

\(\textsf{tr}(A^\dagger B)/2 = 2/2 = 1\)

Equivalence

Unitary matrix: \(U^\dagger U = I\).

\(\mathcal{U}(d)\): group of all \(d \times d\) unitary matrices.

\(\mathcal{E}, \mathcal{E}'\): \(d \times d\) Unitary Error Bases.

\(\mathcal{E} \equiv \mathcal{E}' \Leftrightarrow \exists A, B \in \mathcal{U}(d), f:\mathcal{E} \rightarrow \mathbb{C} : \mathcal{E}' = \{f(E)AEB \mid E \in \mathcal{E}\}\)

Pauli Basis is Unique

Up to equivalence, the Pauli basis is unique in dimension 2.

Let \(\mathcal{E} = \{E_1, E_2, E_3, E_4 \}\) be a \(2 \times 2\) unitary error basis.

Then \(E_1^\dagger \mathcal{E} = \{I, E_1^\dagger E_2, E_1^\dagger E_3, E_1^\dagger E_4 \}\) is also a unitary error basis.

Characterization

\(U\)
\(d \times d\) unitary matrix.
\(E_i(U)\)
\(\sqrt{d} (U_{i,nd+m})_{n,m=0,\ldots,d-1}\)

\(U = \begin{bmatrix} 0 & -i \\ i & 0 \\ \end{bmatrix}\)

\E_0(U) = \sqrt{2} \begin{bmatrix} U_{0,0} & U_{0,1} \ U_{0,2} & U_{0,3} \ \end{bmatrix})

TODO: Fix above

Nice Unitary Error Bases

https://people.engr.tamu.edu/andreas-klappenecker/ueb/uebdef.html

\(G\): finite group.

\(|G| = n^2, n \in \mathbb{N}\).

Nice error basis

Image of \(D: G \rightarrow \mathcal{U}(n)\) where:

Generators

\(X\): set of generators for \(G\).

\(H\): matrix group generated by \(D(X) = \{ D(x) | x \in X \}\).

\(Z(H) = \{ x | x \in H, \forall h \in H : x h = hx \}\).

Traversal: set of coset representatives of cosets of a subgroup.

Nice error basis is constructed as a traversal of \(Z(H)\) in \(H\).

Example

https://people.engr.tamu.edu/andreas-klappenecker/ueb/uebex.html

Klein Four-Group

Generators

\(x = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}\)

\(y = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}\)

Group

\(x = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}\)

\(x^2 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I\)

\(y = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}\)

\(y^2 = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I\)

\(xy = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}\)

\(xyx = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} = y\)

\((xy)^2 = y^2 = I\)

\(xyy = x(y^2) = xI = x\)

\(yx = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = xy\)

\(G = \{ I, x, y, xy \}\)

\(G = \langle x, y \\; | \\; x^2, y^2, (xy)^2 \rangle\)

https://en.wikipedia.org/wiki/Klein_four-group

Centre

\(Z(G) = \{ z \in G \\; | \\; \forall g \in G : gz = zg \}\)

\(xy \neq yx\)

\(\Rightarrow Z(G) = \{ I, x, y, xy \}\)

Group of Order 8

Generators

\(x = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}\)

\(y = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\)

Group

\(x = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}\)

\(x^2 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I\)

\(y = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\)

\(y^2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = x^2\)

\(xy = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}\)

\(xyx = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} = -y\)

\(xyxy = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = -I\)

\(xyxyx = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} = -x\)

\(xyxyxy = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = -xy\)

\(xyxyxyx = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = y\)

\(yx = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = -xy\)

\(yxy = (-xy)y = -x(y^2) = -x\)

\(G = \{ I, x, y, xy, -I, -x, -y, -xy \}\)

\(G = \langle x, y \\; | \\; x^2, y^2, (xy)^4 \rangle\)

Table

\( \begin{array}{c|cccccccc} & I & x & y & xy & -I & -x & -y & -xy \\ \hline I & I & x & y & xy & -I & -x & -y & -xy \\ x & x & I & xy & y & -x & -I & -xy & -y \\ y & y & -xy & I & -x & -y & xy & -I & x \\ xy & xy & -y & x & -I & -xy & y & -x & I \\ -I & -I & -x & -y & -xy & I & x & y & xy \\ -x & -x & -I & -xy & -y & x & I & xy & y \\ -y & -y & xy & -I & x & y & -xy & I & -x \\ -xy & -xy & y & -x & I & xy & -y & x & -I \\ \end{array} \)

Isomorphism

\(I \leftrightarrow e\)

\(xy \leftrightarrow b\)

\(\Rightarrow -I \leftrightarrow b^2\)

\(\Rightarrow -xy \leftrightarrow b^3\)

\(\Rightarrow b^4 \leftrightarrow e\)

\(x \leftrightarrow a\)

\(\Rightarrow a^2 = e\)

\(\Rightarrow ab \leftrightarrow x^2y = y\)

\(\Rightarrow y \leftrightarrow ab\)

\(ba\leftrightarrow xyx = -y\)

\(ab^3 \leftrightarrow x(-xy) = -x^2y = -y \leftrightarrow ba\)

\(\Rightarrow -y \leftrightarrow ab^3 = ba\)

\(\Rightarrow -x \leftrightarrow ab^2\)

\( \begin{array}{c|cccccccc} & e & b & b^2 & b^3 & a & ab & ab^2 & ab^3 \\ \hline e & e & b & b^2 & b^3 & a & ab & ab^2 & ab^3 \\ b & b & e & b^3 & b^2 & ab^3 & a & ab & ab^2 \\ b^2 & b^2 & b^3 & e & b & ab^2 & ab^3 & a & ab \\ b^3 & b^3 & b^2 & b & e & ab & ab^2 & ab^3 & a \\ a & a & ab & ab^2 & ab^3 & e & b & b^2 & b^3 \\ ab & ab & ab^2 & ab^3 & a & b^3 & e & b & b^2 \\ ab^2 & ab^2 & ab^3 & a & ab & b^2 & b^3 & e & b \\ ab^3 & ab^3 & a & ab & ab^2 & b & b^2 & b^3 & e \\ \end{array} \)

https://groupprops.subwiki.org/wiki/Dihedral_group:D8

Centre

\(Z(G) = \{ z \in G \\; | \\; \forall g \in G : gz = zg \}\)

\(ab \neq ba\)

\(\Rightarrow Z(G) = \{ e, b^2 \}\)

Traversal

https://proofwiki.org/wiki/Definition:Transversal_(Group_Theory)

A subset \(S \subseteq G\) where every (left/right) coset contains exactly one element of \(S\).

Nice Error Basis

Traversal of centre of \(H\).

Centre

\(\{ I, -I \}\)

Cosets

\(\{ I, -I \}\) \(\{ x, -x \}\) \(\{ y, -y \}\) \(\{ xy, -xy \}\)

Traversal

\(\{ I, x, y, xy \}\)

Knill