A set of $n^2$ orthonormal $n \times n$ matrices with respect to the inner product $\langle A, B \rangle = \text{Tr}(A^\dagger B)/n$ where $\text{Tr}(M)$ is the trace of the matrix $M$ and $M^\dagger$ is its conjugate transpose.
Example: Pauli Matrices
$\left\{\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ \end{bmatrix}, \; \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ \end{bmatrix}, \ \begin{bmatrix} 1 & 0 \\ 0 & -1 \\ \end{bmatrix}, \ \begin{bmatrix} 0 & -i \\ i & 0 \\ \end{bmatrix}\right\}$
Conjugate Transpose
$A^\dagger = A^\text{H} = A^\dagger = \bar{A}^\textsf{T}$
$\begin{bmatrix} i & 2+i \\ 1 & 3-2i \\ \end{bmatrix}^\dagger = \begin{bmatrix} -i & 1 \\ 2-i & 3+2i \\ \end{bmatrix}$
Trace
$A = [a_{ij}]$
$\text{Tr}(A) = \sum_i a_{ii}$
$\text{Tr}(A \otimes B) = \text{Tr}(A) \text{Tr}(B)$
$\text{Tr}(A + B) = \text{Tr}(A) + \text{Tr}(B)$
$\text{Tr}(cA) = c\text{Tr}(A)$
$\text{Tr}(A) = \sum_i \lambda_i$
$\text{Tr}(A) = c\text{Tr}(A)$
Inner Product
$A, B$: $n \times n$ matrices.
$\langle A, B \rangle = \text{Tr}(A^\dagger B) / n$
Orthogonality
$A = \begin{bmatrix} 0 & -i \\ i & 0 \\ \end{bmatrix}\qquad B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \\ \end{bmatrix}$
$A^\dagger = \begin{bmatrix} 0 & -i \\ i & 0 \\ \end{bmatrix}$
$A^\dagger B = \begin{bmatrix} 0 & -i \\ i & 0 \\ \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 0 & -1 \\ \end{bmatrix}=\begin{bmatrix} 0 & i \\ i & 0 \\ \end{bmatrix}$
$\textsf{tr}(A^\dagger B) = 0 + 0 = 0$
$d = 2$
$\textsf{tr}(A^\dagger B)/2 = 0/2 = 0$
Normality
$A = \begin{bmatrix} 0 & -i \\ i & 0 \\ \end{bmatrix} \qquad A^\dagger = \begin{bmatrix} 0 & -i \\ i & 0 \\ \end{bmatrix}$
$A^\dagger A = \begin{bmatrix} 0 & -i \\ i & 0 \\ \end{bmatrix}\begin{bmatrix} 0 & -i \\ i & 0 \\ \end{bmatrix}=\begin{bmatrix} -i^2 & 0 \\ 0 & -i^2 \\ \end{bmatrix}$
$\textsf{tr}(A^\dagger A) = -i^2 + -i^2 = 2$
$d = 2$
$\textsf{tr}(A^\dagger B)/2 = 2/2 = 1$
Equivalence
Unitary matrix: $U^\dagger U = I$.
$\mathcal{U}(d)$: group of all $d \times d$ unitary matrices.
$\mathcal{E}, \mathcal{E}’$: $d \times d$ Unitary Error Bases.
$\mathcal{E} \equiv \mathcal{E}’ \Leftrightarrow \exists A, B \in \mathcal{U}(d), f:\mathcal{E} \rightarrow \mathbb{C} : \mathcal{E}’ = \{f(E)AEB \mid E \in \mathcal{E}\}$
Pauli Basis is Unique
Up to equivalence, the Pauli basis is unique in dimension 2.
Let $\mathcal{E} = \{E_1, E_2, E_3, E_4 \}$ be a $2 \times 2$ unitary error basis.
Then $E_1^\dagger \mathcal{E} = \{I, E_1^\dagger E_2, E_1^\dagger E_3, E_1^\dagger E_4 \}$ is also a unitary error basis.
Characterization
- $U$
- $d \times d$ unitary matrix.
- $E_i(U)$
- $\sqrt{d} (U_{i,nd+m})_{n,m=0,\ldots,d-1}$
$U = \begin{bmatrix} 0 & -i \\ i & 0 \\ \end{bmatrix}$
$E_0(U) = \sqrt{2} \begin{bmatrix} U_{0,0} & U_{0,1} \\ U_{0,2} & U_{0,3} \\ \end{bmatrix}$
TODO: Fix above
Nice Unitary Error Bases
https://people.engr.tamu.edu/andreas-klappenecker/ueb/uebdef.html
$G$: finite group.
$|G| = n^2, n \in \mathbb{N}$.
Nice error basis
Image of $D: G \rightarrow \mathcal{U}(n)$ where:
- $D(1_G) = I_n$
- $\textsf{tr}(D(g)) = 0$ for all $g \neq 1_G$.
- $D(g)D(h) = c D(gh)$ where $c \in \mathbb{C}$ and $|c| = 1$.
Generators
$X$: set of generators for $G$.
$H$: matrix group generated by $D(X) = \{ D(x) | x \in X \}$.
$Z(H) = \{ x | x \in H, \forall h \in H : x h = hx \}$.
Traversal: set of coset representatives of cosets of a subgroup.
Nice error basis is constructed as a traversal of $Z(H)$ in $H$.
Example
https://people.engr.tamu.edu/andreas-klappenecker/ueb/uebex.html
Klein Four-Group
Generators
$x = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
$y = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$
Group
$x = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
$x^2 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$
$y = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$
$y^2 = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$
$xy = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$
$xyx = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} = y$
$(xy)^2 = y^2 = I$
$xyy = x(y^2) = xI = x$
$yx = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = xy$
$G = \{ I, x, y, xy \}$
$G = \langle x, y \; | \; x^2, y^2, (xy)^2 \rangle$
https://en.wikipedia.org/wiki/Klein_four-group
Centre
$Z(G) = \{ z \in G \; | \; \forall g \in G : gz = zg \}$
$ xy \neq yx $
$ \Rightarrow Z(G) = \{ I, x, y, xy \} $
Group of Order 8
Generators
$x = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
$y = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
Group
$x = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
$x^2 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$
$y = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
$y^2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = x^2$
$xy = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$
$xyx = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} = -y$
$xyxy = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = -I$
$xyxyx = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} = -x$
$xyxyxy = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = -xy$
$xyxyxyx = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = y$
$yx = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = -xy$
$yxy = (-xy)y = -x(y^2) = -x$
$G = \{ I, x, y, xy, -I, -x, -y, -xy \}$
$G = \langle x, y \; | \; x^2, y^2, (xy)^4 \rangle$
Table
$ \begin{array}{c|cccccccc} & I & x & y & xy & -I & -x & -y & -xy \\ \hline I & I & x & y & xy & -I & -x & -y & -xy \\ x & x & I & xy & y & -x & -I & -xy & -y \\ y & y & -xy & I & -x & -y & xy & -I & x \\ xy & xy & -y & x & -I & -xy & y & -x & I \\ -I & -I & -x & -y & -xy & I & x & y & xy \\ -x & -x & -I & -xy & -y & x & I & xy & y \\ -y & -y & xy & -I & x & y & -xy & I & -x \\ -xy & -xy & y & -x & I & xy & -y & x & -I \\ \end{array} $
Isomorphism
$I \leftrightarrow e$
$xy \leftrightarrow b$
$\Rightarrow -I \leftrightarrow b^2$
$\Rightarrow -xy \leftrightarrow b^3$
$\Rightarrow b^4 \leftrightarrow e $
$x \leftrightarrow a$
$\Rightarrow a^2 = e$
$\Rightarrow ab \leftrightarrow x^2y = y$
$\Rightarrow y \leftrightarrow ab$
$ba\leftrightarrow xyx = -y$
$ab^3 \leftrightarrow x(-xy) = -x^2y = -y \leftrightarrow ba$
$\Rightarrow -y \leftrightarrow ab^3 = ba$
$\Rightarrow -x \leftrightarrow ab^2$
$ \begin{array}{c|cccccccc} & e & b & b^2 & b^3 & a & ab & ab^2 & ab^3 \\ \hline e & e & b & b^2 & b^3 & a & ab & ab^2 & ab^3 \\ b & b & e & b^3 & b^2 & ab^3 & a & ab & ab^2 \\ b^2 & b^2 & b^3 & e & b & ab^2 & ab^3 & a & ab \\ b^3 & b^3 & b^2 & b & e & ab & ab^2 & ab^3 & a \\ a & a & ab & ab^2 & ab^3 & e & b & b^2 & b^3 \\ ab & ab & ab^2 & ab^3 & a & b^3 & e & b & b^2 \\ ab^2 & ab^2 & ab^3 & a & ab & b^2 & b^3 & e & b \\ ab^3 & ab^3 & a & ab & ab^2 & b & b^2 & b^3 & e \\ \end{array} $
https://groupprops.subwiki.org/wiki/Dihedral_group:D8
Centre
$Z(G) = \{ z \in G \; | \; \forall g \in G : gz = zg \}$
$ ab \neq ba $
$ \Rightarrow Z(G) = \{ e, b^2 \} $
Traversal
https://proofwiki.org/wiki/Definition:Transversal_(Group_Theory)
A subset $S \subseteq G$ where every (left/right) coset contains exactly one element of $S$.
Nice Error Basis
Traversal of centre of $H$.
Centre
$\{ I, -I \}$
Cosets
$\{ I, -I \}$ $\{ x, -x \}$ $\{ y, -y \}$ $\{ xy, -xy \}$
Traversal
$\{ I, x, y, xy \}$
Knill
Group Representations, Error Bases and Quantum Codes
Emanuel Knill
https://www.osti.gov/biblio/378680