Rings and Fields

ianmcloughlin.github.io linkedin github

Field example

\(\mathbb{R}\): set of real numbers.

\(0, 1 \, \in \, \mathbb{R}\): two points on a number line.

\(x\): any point on the number line, distance from \(0\) relative to \(1\).

\(x_1 + x_2\): addition.

\(x_1 \times x_2\): multiplication.

\(x_1 \times (x_2 + x_3) = (x_1 \times x_2) + (x_1 \times x_3)\).

\(1\): identity.

\(x_1 + x_2 = x_2 + x_1\): order doesn’t matter.

\(x_1 \times x_2 = x_2 \times x_1\): order doesn’t matter.

\(-x\): inverse of \(x\) for \(+\).

\(x^{-1}\): inverse of \(x\) for \(\times\).

\(2 \times \frac{1}{2}\): inverses.

Ring example

\(\mathbb{Z}\): set of integers.

\(\mathbb{Z} \subset \mathbb{R}\): integers are a subset of reals.

\(\frac{1}{2}\): not an integer.

\(2\): has no inverse for \(\times\) in \(\mathbb{Z}\).

Field

\(F(+, \times)\): field.

\(F\): a set.

\(+, \times\): binary operations.

\(F(+)\): commutative group, identity \(0\).

\((F \setminus \{ 0 \})(\times)\): commutative group with identity \(1 \neq 0\).

\(f_1 \times (f_2 + f_3) = (f_1 \times f_2) + (f_1 \times f_3)\).

\((f_1 + f_2) \times f_3 = (f_1 \times f_3) + (f_2 \times f_3)\).

Ring

Same as a field except…

\(\times\): might not be commutative, might not have inverses.

Zero divisors

\(r_1, r_2\): rings can have elements where \(r_1 \times r_2 = 0\) and neither is \(0\).

##∑ Other examples

\(\mathbb{Q}\): set of rationals \(\{\frac{a}{b} \mid a, b \in \mathbb{Z} \}\).

\(\mathbb{C}\): set of complex numbers \(\{a + bi \mid a, b \in \mathbb{R} \}\).

\(\mathbb{Z}_7\): integers modulo 7.

\(\mathbb{R} \times \mathbb{R}\): Cartesian plane.