Shuffling
$(a,b,c)$
$(a,c,b)$
$(b,a,c)$
$(b,c,a)$
$(c,a,b)$
$(c,b,a)$
Actions
$(0, 1, 2) \rightarrow (0,1,2)$
$(0, 1, 2) \rightarrow (0,2,1)$
$(0, 1, 2) \rightarrow (1,0,2)$
$(0, 1, 2) \rightarrow (1,2,0)$
$(0, 1, 2) \rightarrow (2,0,1)$
$(0, 1, 2) \rightarrow (2,1,0)$
Positional Notation
Apply $(1,0,2)$ to $(a,b,c)$ giving $(b,a,c)$.
Sometimes written as
$\begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 2 \end{pmatrix}$
Combining Permutations
Apply $(1, 0, 2)(2, 1, 0)$ to $(a,b,c)$.
First, apply $(2,1,0)$ to $(a,b,c)$ giving $(c,b,a)$.
Then apply $(1,0,2)$ to $(c,b,a)$ giving $(b,c,a)$
Note that we can apply $(1,0,2)$ to $(2,1,0)$ giving $(1,2,0)$.
See $(1,2,0)$ applied to $(a,b,c)$ also gives $(b,c,a)$.