Groups

ianmcloughlin.github.io linkedin github

Set of permutation matrices

\(P\): \(n \times n\) permutation matrix.

\(S_n = \{ P \}\): set of all permutation matrices.

Operations

\( \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix} \) \( \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ \end{bmatrix}= \) \(\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ \end{bmatrix} \)

\(P_1 \times P_2\): matrix multiplication is a binary operation.

\(P_1 \times P_2\) is another permutation matrix - \(S_n\) is closed.

\(I\): the identity matrix is a permutation matrix.

\((A \times B) \times C = A \times (B \times C)\): matrix multiplication is associative.

\( \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix} \)\( \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix}= \)\( \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix} \)

\(P^{-1}\): inverse permutation.

\(\{ P \}\) is a group under matrix multiplication.

Subgroups

\(\{ Q \} \subseteq \{ P \}\): subset.

Some subsets are closed themselves and contain the identity.

Such subsets are called subgroups.

Subgroups contain the inverses of all their elements.

Some (most) subsets are not subgroups.

Order

\(n!\): number of permuations of \(n\) elements.

\(n!\): number of \(n \times n\) permutation matrices.