Groups and Generators

ianmcloughlin.github.io linkedin github

Groups, subgroups, and sets

\(G(\times)\): a group with operation \(\times\).

\(H \leq G\): \(H\) is a subgroup of \(G\) under induced \(\times\).

\(S \subseteq G\): \(S\) is a subset of \(G\).

Generating set

Generating set iff every element of \(G\) is a product of elements in \(S\).

\(\langle S \rangle = G\).

Minimal generating set

\(M\): generating set with minimum number of elements for \(|G| = n\).

\(\log_2 n\): upper bound on \(|M|\).

Group identity is never in \(M\).

Suppose \(M = \{ m_1, m_2, \ldots, m_l \}\).

Remove \(m_i\) then \(|\langle M \rangle | \geq 2 |\langle M \setminus \{ m_i \} \rangle |\).

Permutation matrices

Assume \(n \geq 3\).

For \(S_n\), one \(M=\{ (1\ 2) , (1 \ 2 \ 3 \ \ldots n) \}\).

For \(S_4\), \((1\ 2)\) is:

\( \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{bmatrix} \)

and \((1 \ 2 \ 3 \ 4)\) is:

\( \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ \end{bmatrix} \)

Then, for instance, \((1 \ 3 \ 4)\) is:

\((1 \ 3 \ 4) = (1 \ 2)(1 \ 2 \ 3 \ 4) =\)

\( \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{bmatrix} \)\( \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ \end{bmatrix}= \)\( \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ \end{bmatrix} \)